

Nairobi

From Slums detection to slum definition ... Urban remote and methodological developments

Christiane Weber CNRS – Strasbourg – France

Christiane.weber@lorraine.u-strasbg.fr

Laboratoire Image et Ville UMR 7011

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Presentation

Context

Satellite imagery

Detection & Extraction Identification & Analyse

Slums detection towards slums definition

Direct link? Relevant spatial characteristics?

Detection: constrains

Various situations

Informal settlements on slopes Chaotic structures without networks Elevation and regular forms Diversity of materials Size of elements and surrounding buildings

→ Variety of situations, difficulty to generalize

Context: Urban specificities

Urban management = - need of various types of information - at various scales

2	Niveau I	Global level	> 1/25 000e			
	Niveau II	Urban Planning	du 1/5 000e au 1/10 000e			
	Niveau III	Urban mapping	du 1/1000e au 1/2000e			
2	Niveau IV	Technical applications	du 1/200e au 1/500e			
	the second se					

Context: Urban specificities

Information extraction at various levels (urban area, urban structu, urban object) with HSR images?

Context: Detection

 Scale → Spatial resolution
 Environment → Spectral resolution, GIS data (ancillary)
 Object → Spatial & spectral resolution, GIS data (ancillary)

What can we do? Detection & Extraction

- 1) Very high spatial resolution? (or multi-resolution solution)
- 2) RS usual image processing concepts or morphological concepts or knowledge based concepts?

Identification & Analyse

- 3) GIS integration?
- 4) Methodological efficiency?

Satellite imagery

required to identify urban elements

New paradigm ?

From pixel to object

changing classical rules defining optimal spatial resolution

From object to region

adding more (different) knowledge: ancillary data, logical or spatial rules ...

Detection: new paradigms

Modification of semantic signification of spectral values

Inappropriate usual classification methods

The use of spectral information is no more suffisant

Detection: characteristics

Spatial Resolution	Applications
VHR : 0.5 -1.5 mètre	Identification, cartography of objects (cars, trees, urban materials) Classification of vegetal species and strata Detection of small grassland areas
HRS : 1.5 - 5 mètres	Distinction of buildings Identification, cartography of objects (constructions) Classification of strata and shrubby areas Detection small areas, plants diseases, small agricultural areas
HRS : 5 - 10 mètres	Location/cartography of buildings, roads, agricultural lands, streets Classification of vegetation strata Distinction of vegetation species, plants disease Classification of land parcels
HRS : 10 -20 mètres	Location et geometry of large infrastructures (airports, city centres, suburbs, commercial malls, industrial.areas) Global classification

Applications regarding spatial resolution

Detection: characteristics

© DigitalGlobe (2002)

Image heterogeneity increase

Detection: characteristics

Same object type composed with various material,

versus same material for various objects

Detection & Extraction approache

1. Integrate spatial or structural information

Optimal spatial resolution Local contextual information, relationships Extraction and integration of knowledge

Integrate spatial or structural informatic

Definition of an Optimum Spatial Resolution?
 Minimal resolution / Functional resolution
 Protocole: identification of the objects

Integrate spatial or structural informatic

1. Definition of an Optimum Spatial Resolution?

Protocole : - identification of the objects - variance analysis at different spatial resolutions

Integrate spatial or structural informatio

1. Definition of a Optimum Spatial Résolution?

Minimal resolution / Functional resolution

Results :

- areas type « grassland »
 < = 0.8- 5 m 0.8 1m
 objets type « building » (rectangular
 = 2 3 m 0.8 3m
 objets type « road » (linear)
 - = 0.8 1 m 1 2m
- objets type « residential building » (square)

= 0.8 - 5 m 0.8 - 3m

Pixel = 0.8 m

Integrate spatial or structural informatio

Integrate spatial or structural informatio

Fractal behavior of Da Nang 1990 et 2001

→Two processes : densification and urban sprawl

→ Physical obstacles

Integrate spatial or structural informatic

LULC categories	Urban	D - Surface correlation measures			
Level 4	categories	1990	2001		
Urban core	Very dense	1,73 – 1,89	1,86 – 1,94		
Less densely urbanized	dense	0,96 – 1,73	1,64 – 1,85		
Residential areas	less dense	0 - 1,63	1,32 – 1,59		
	Surbubs	< 1,0	< 1,3		

Fractal behavior of Da Nang 1990 et 2001

Image processing improvemen

2. Improve the results of traditional extraction methods

Combining spectral data with measures of texture or mathematical morphology Developing new algorithms probabilities, soft classifiers **Combining ancillary data and expert knowledge**

Image processing improvements

Combining spectral data with measures of texture or mathematical morphology or ancillary data

Development of new algorithms using

- *(i) a priori* **probabilities** or *a posteriori* processing known as "soft classifier", based on Bayesian probabilities or fuzzy set theorie or believes theorie
- (ii) combining ancillary data and expert knowledge (AI): machine learning, ontology, data mining

) To integrate spatial or structural information

Local contextual information (Geometry and spatial relationships)

Characteristics

Segmentation "regions"

3 relevant criteria : (a) Spectral values (b) dimensions and shape (c) Spatial relationships

as « building ».

Relevant criteria

Rules definition

Integration and classification

Object analysis

Characteristics

Characteristics

Functionnal or biophysic characteristics (1/10 000°)

2

Recognition rules definition

Multicriteria attributs

llot n°3

critère n°1 : 70% de surfaces artificialisées critère n°2 : bâtiments de type (dense - tuile) critère n°3 : pas d'orientations définies critère n°4 : distance entre bâtiments nulle critère n°5 : alignement non-identifiable critère n°6 : 14% espace vide - forme carré IH = 0.63 critère n°7 : 6% arbre + 4% pelouse + 20% route

Tissu urbain moyennement dense

Extraction and integration of Knowledge

Focus on the development of knowledg extraction - Formalization

What kind of knowledge is useful to identify the urban objects in the images?

- Domain: End-users needs / typology
- Expert attributs: color, shape, size, texture, spatial relationships ...

How to acquire this knowledge ?

→ Learning methods

Focus on the development of knowledge extraction « concept definition

Classifiers:

Quantitative approaches or artificial neural network, collaborative or genetic classifiers, AI approaches

Questions?

Number of classes Results assessment Choice of « attributs »

« Concept » definition: set of attributs relevant for classification

Focus on the development of knowledge extraction « concept definition

Focus on the development of knowledge extraction - Spatial Ontology

How to describe clearly the objects of the domain in an understandable language?

Identify objects to be extracted => 'concepts inventory' Definition of these concepts => attributes

Design of a 'spatial ontology'

Dictionary of geographic objects

Translation into an understandable language (Protege2000)

Focus on the development of knowledg extraction - Spatial Ontolog

Objects Dictionary

Fiche 1 : Pavillon

A. Identification de l'objet

١	Туре	Nom de l'objet :	Type d'objet élémentaire	Type d'objet « image »	Résolution
	\bigcirc	Pavillon	Bâtiment	Objetimage simple	THR1
I	Polygone				

B. Description de l'objet dans le monde réel

B.1 Définition textuelle

L'objet « pavillon » ou « maison individuelle » appartient à la catégorie d'objets élémentaires « bâtiment ». Il désigne une construction durable destinée à abriter l'activité humaine reliée à l'habitat.

La portée de cette définition est restreinte par les critères suivants. En général, un pavillon :

- est situé dans un îlot physique (domaine privé) ;
- a une emprise au sol d'au moins 12 m²;

Ces critères visent à exclure notamment les abribus, les aubettes, les remises à outil, cabanes de jardin etc. de la définition de l'objet « pavillon ».

Le pavillon ou maison individuelle est le plus souvent organisée en lotissement ou cité (cf. objet construit).

B.2 Illustration graphique : THR

Emprise d'un bâtiment sur une image satellite

C. Description de l'objet dans l'image

C.1 Nature de l'objet

Objet physique – objet image simple identifiable à THR1

C.2. Définition textuelle

L'objet «pavillon » ou « maison individuelle » est représenté graphiquement par un polygone dont la surface correspond à l'emprise au sol du bâtiment

C.3. Principales relations

Adjacenœ	Objets de type « végétation » Objets de type « autre route »		
Alignement	oui		
Distance entre barycentre = rel <i>a</i> tion de voisinage	Faible = appartenance à une cité ouvrière Moyenne Elevée		
inclusion	TU pavillonnaire HR1 et HR2		

C.4. Attributs

	Mineral – types possibles							
Signature spectrale	Blanc B1: 56,6-255 avec histogramme de 0 à 255 B2: 58,6-255 B3: 56,6-255 B4: 20,5-254,8 IBS: [55-255] NDVI: [16-65,25]	Gris B1: [19,3-60] avec histogramme de 0 à 255 B2: [14,3-60] B3: [17,6-67] B4: [14-67,3] IBS: [11,6-56,3] NDVI: [28-99]	Orange B1: [21,7-62,35] avec histogramme de 0 à 255 B2: [19,4-80,15] B3: [29,7-135,1] B4: [34,8-139] IB5: [14,6-60,1] NDVI: [50,2-108,3]					
Longueur ou diamétre (m)	13 à 61		•					
Largeur (m)	/							
Périmétre	36 à 92							
Surface (m*)	82 à 437							
Indiœ de Miller	0,55 à 0,78							
Surface Poly Convex (Sc)	82 à 485							
Surface/Sc	0,85 á 1							
Indice de Morton	0.51 à 0.63							
Texture (variance)	homogéne							

Focus on the development of knowledge extraction - Spatial Ontological

Spatial Ontology

=> Written in an « open-source » software

	1 🖌 🖌 🎽		oncogrees_romacogo		<	ØP	roté
🗕 Classes 🛑 Slots 📑 Forms 🔶 Instar	ices 📕 Queries						
LASS BROWSER	CLASS EDITOR						
or Project: 🗢 Ontologie06_v3	For Class: 😑 Surface_herk	euse_THR	(instance of :STANDARD-CL	ASS)		R	D.
loop Historatabu 🦂 🔰 🍝 🗙 🖛	Hamo		Desumentation	Constrainte	8	244	÷ .
THNG	Surface berbaune THP		Documentation	Constraints			
 SYSTEM-CLASS 	Surface_herbeuse_her						
Objet geographique	Role						
V Bijet_geographique_image	Concrete	-					
🔻 😑 Objets_image_THR							
Mineral_THR	Template Slots			2	ጹ 🗮	- 101	-
Vegetation_THR	Name	Cardinality	Type	Other Face	ts		
Surface_herbeuse_THR	adjacence	single	Instance of Autre_route or E.				
Arbre_THR	 alignement 	single	Symbol	allowed-values={Oui,Non}			
Arbuste_acompleter	indice_de_morton	single	Float				
Buisson_acompleter	largeur_(m)	single	Float				
Terrain sport naturel THR	Iongueur_ou_diametre_(single	Float				
Parcelle agricole THR	(i) signature_spectrale_B1	single	Float	minimum=18.6, maximum=42.7			
Foret THR	(C) signature_spectrale_B2	single	Float	minimum=24.6, maximum=54.7			
Groupe_arbre_THR	(G) signature_spectrale_B3	single	Float	minimum=17.3, maximum=00.5			
Eau_THR	(iii) signature_spectrale_B4	single	Float	minimum=25.35 maximum=52.7			
Sol_nu_THR	(c) signature spectrale NDI	' single	Float	minimum=168.8. maximum=255.0			
Ombre_THR	surface (m ²)	single	Float				
Objets_image_HR1	= texture	single	Float				
🕨 😑 Objets_image_HR2	type_objet	single	Symbol	allowed-values=Simple			
🕨 😑 Objet_geographique_construit							
							e <u>(2004</u> roté <u>c</u> ⊗ → •
- 86							
	-						
uperclasses 🔮 📕							
Vegetation_THR							

« open-source » software (Protege 2000)

Focus on the development of knowledg extraction - Learning to

Supervised Machine Learning

- Learning from examples given by the expert: description and classes

Focus on the development of knowledg extraction - Learning to

Supervised Machine Learning

- Learning from examples given by the expert: description and classes built the rules from these examples to explain the classification from the description
- Apply the rules (C4.5 algorithm [Quinlan 93] symbolic algorithm providing a decision tree > shortest optimal description for classification)

Focus on the development of knowledg extraction - Learning to

Steps of the rules acquisition process

1 Segmentation

A region growing approach (eCognition software)

Use of ancillary data to constrain the segmentation procedure and obtain homogeneous regions

Vector data from Topographic database: BDTopo (IGN) – metric precision

Image

Segmentation without ancillary data

Segmentation with ancillary data

Vector data

2 Definition of Training examples

- Spectral features:
 - 4 bands (R,G,B,NIR): mean by region
 - 2 index (NDVI, SBI): mean by region

- **Spatial and contextual features**

- perimeter
- area
- diameter
- compacity (Miller's index)
- solidity (convexity)
- % of vegetation around buildings (20m)

2 Definition of Training examples zones

- Several steps:

3 Learning procedure

- Learned Rules:

SPECTRAL RULES: Entire range of values [0...255]

Class Hierarchy - Level 1:

Rule 1: IF NDVI < 38.23 and IBS > 14.67 THEN Class = Water ELSE Class = Non Water Rule 2: IF NDVI > 169.14 THEN Class = Vegetation ELSE Class = Non Vegetation

Rule 3: IF GREEN < 15.65 THEN Class = Shadow ELSE Class = Non Shadow

Rule 4: IF NIR > 59.25 and BLUE < 57.86 THEN Class = Bare Soil IF RED > 101.24 THEN Class = Bare Soil ELSE Class = Mineral

Class Hierarchy - Level 2:

Rule 5: IF 60.2 < BLUE < 130.8 THEN Class = Road ELSE Class = Building Rule 6: IF GREEN > 30.4 THEN Class = Grass

ELSE Class = Tree

3 Learning procedure

Learned Rules:

SPATIAL RULES: Entire range of values [0...255]

Class Hierarchy - Level 3:

Rule 7: IF AREA > 5203 m² and IM > 0.3 THEN Class = Building of A. IF AREA < 436.8 THEN Class = Residential B. IF AREA < 1254.9 THEN Class = Collective B. IF PV > 11.9 and AREA < 1803.2 THEN Class = Collective B. IF IS < 0.43 THEN Class = Collective Building ELSE Class = Continuous Built-up Area

Experiments

4 Classification

Experiments How to integrate ? Exemple QB MS 🔵 Eau (1) 🗄 🕒 Non_Eau (eCognition) 🗄 🌑 Non_Vegetation 🗄 🌑 Non_Ombre | 🗄 🔴 Non_Sol_Nu **Global Accuracy : 79,7%** - 🔴 Bati (5) Kappa : 75,5% --- Route (6) - 🔵 Sol_Nu (7) Global Accuracy : 80,2 % TO TOTO Ombre (2) Kappa : 79% 🗄 🔴 Vegetation . Arbres (3) Pelouse (4)

Results Analyses:

- Enhancement of the classification results (> 5%)
- Rely on the segmentation quality
- Influence of identification order of the objects
- Influence of the integration approach of the knowledge rules

Slums detection towards slums definition

Detection versus SLUM definition

Detection

- Scale
 - Environment
 - Structure
 - Object

• Definition

- Criteria
 - Poverty
 - Water accessibility
 - ...
- Measurements
 - Surveys
 -

Direct link?

Relevant spatial characteristics

Detection versus SLUM definition

Detection & Extraction

Ana

Analyse & Identification

Urban element

- > Urban element:
- "Pencil house" (Vietnam)
- "Bloc" (Mexico)

Environment characteristics

- vegetation?, water, slope?
- Network?
- Risk?

Urban production mode

- "Selfmade" house
- Community action
- Urgency

Social characteristics

- Poverty
- Water Access
- Unemployment

- ...

Detection versus SLUM definition

Detection & Extraction

Scale: HR or/and VHR \rightarrow availability, cost, date

Methodology: structure → heterogeneous, dense, without network specific geometry or morphology dimensions spectral → Material :adapted spectral library? spatial → ratio between resolution/objectives/means

Generalisation:

Ontology → to de defined (ground survey and comparison); *dictionary* adapted to the country or continent

concept definition → experiments with ancillary data (spatial relationships, contextual features...) environmental characteristics (slopes, watershed, derelict areas...)

rules \rightarrow to be defined

Detection versus SLUM rules definition

Relevant criteria :

Spectral & geometry

Spectral values (material) Structure characteristics (morphological or fractal dimension) Dimensions and shape (urban fabric)

Spatial relationships:

Open space Linearity or orientation Distance between the buildings Parallelism

Environment Rules:

« If the element is located on a slope (n%) or in a watershed or floodable area or over the water pressure capacities than the location might be potential for a slum location"

Object Rules:

 « If the element is characterised by these Spectral footprint types (x1, xn) and if the density is > 75% and the element belongs to this Urban fabric type than it can be characterized As potential slum habitat »

From slums detection to slum definition

Multidisciplinary issues: task groups Step by step procedure Need ground truth investigations Need to know the urban model production Need to test the design of a specific dictionary

Thank you ...

Focus on the development of knowledge extraction - Learning to

Supervised Machine Learning

Learning from examples

Use of the C4.5 algorithm [Quinlan 93]: symbolic algorithm providing a decision tree > shortest optimal description for classification using the concept of information Entropy

Context...

Integrate spatial or structural information

Spectral Fusion

Complementarity of high spatial and spectral information

